The maltodextrin system of Escherichia coli: glycogen-derived endogenous induction and osmoregulation.
نویسندگان
چکیده
Strains of Escherichia coli lacking MalQ (maltodextrin glucanotransferase or amylomaltase) are endogenously induced for the maltose regulon by maltotriose that is derived from the degradation of glycogen (glycogen-dependent endogenous induction). A high level of induction was dependent on the presence of MalP, maltodextrin phosphorylase, while expression was counteracted by MalZ, maltodextrin glucosidase. Glycogen-derived endogenous induction was sensitive to high osmolarity. This osmodependence was caused by MalZ. malZ, the gene encoding this enzyme, was found to be induced by high osmolarity even in the absence of MalT, the central regulator of all mal genes. The osmodependent expression of malZ was neither RpoS nor OmpR dependent. In contrast, the malPQ operon, whose expression was also increased at a high osmolarity, was partially dependent on RpoS. In the absence of glycogen, residual endogenous induction of the mal genes that is sensitive to increasing osmolarity can still be observed. This glycogen-independent endogenous induction is not understood, and it is not affected by altering the expression of MalP, MalQ, and MalZ. In particular, its independence from MalZ suggests that the responsible inducer is not maltotriose.
منابع مشابه
Glucose- and glucokinase-controlled mal gene expression in Escherichia coli.
MalT is the central transcriptional activator of all mal genes in Escherichia coli. Its activity is controlled by the inducer maltotriose. It can be inhibited by the interaction with certain proteins, and its expression can be controlled. We report here a novel aspect of mal gene regulation: the effect of cytoplasmic glucose and glucokinase (Glk) on the activity and the expression of MalT. Amyl...
متن کاملMutant of Escherichia coli deficient in osmoregulation of periplasmic oligosaccharide synthesis.
A mutant of Escherichia coli (mdoR) has been isolated which is defective in synthesis of the membrane-derived oligosaccharides (MDO) normally found in the periplasmic space. In media of high osmotic pressure this defect is suppressed and MDO levels approaching those of the wild type are produced. The mdoR mutant also fails to accumulate glycogen; however, genetic analysis showed that mdoR was n...
متن کاملThe crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase.
In animals, glycogen phosphorylase (GP) exists in an inactive (T state) and an active (R state) equilibrium that can be altered by allosteric effectors or covalent modification. In Escherichia coli, the activity of maltodextrin phosphorylase (MalP) is controlled by induction at the level of gene expression, and the enzyme exhibits no regulatory properties. We report the crystal structure of E. ...
متن کاملThe maltodextrin system of Escherichia coli: metabolism and transport.
The maltose/maltodextrin regulon of Escherichia coli consists of 10 genes which encode a binding protein-dependent ABC transporter and four enzymes acting on maltodextrins. All mal genes are controlled by MalT, a transcriptional activator that is exclusively activated by maltotriose. By the action of amylomaltase, we prepared uniformly labeled [(14)C]maltodextrins from maltose up to maltoheptao...
متن کاملA cost-effective polyphosphate-based metabolism fuels an all E. coli cell-free expression system.
A new cost-effective metabolism providing an ATP-regeneration system for cell-free protein synthesis is presented. Hexametaphosphate, a polyphosphate molecule, is used as phosphate donor together with maltodextrin, a polysaccharide used as carbon source to stimulate glycolysis. Remarkably, addition of enzymes is not required for this metabolism, which is carried out by endogenous catalysts pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 187 24 شماره
صفحات -
تاریخ انتشار 2005